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Abstract

Blends of known amounts of α- and β-PP crystals were prepared from pure α- and pure β-PP sam-

ples. Their fusion behaviours were studied by differential scanning calorimetry (DSC). The fusion

heats of the α- and β-crystals were approximated from the DSC curves and compared with those cal-

culated on the basis of the compositions of the blends. A correction function was found which im-

proved the accuracy of the respective fusion heats significantly from the DSC analysis. The correc-

tion function can be used to determine the respective fusion heats of a PP sample which contains an

unknown mixture of the α- and β-crystals.
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Introduction

In the preparation of β-phase polypropylene (β-PP), the sample normally contains a mix-

ture of the α- and β-phase crystals. Its DSC curve possesses two (or more) fusion peaks

as a result of melting of the α- and β-phase crystals [1–3]. The α- and β-fusion peaks are

partially overlapped, therefore, it is difficult to determine the respective fusion heats and

hence their degrees of crystallinity. In our previous studies [4–5], the respective fusion

heats were approximated by drawing a vertical line through the maxima between the two

peaks. The area (∆Hα
exp

) enclosed by the vertical line, the α-fusion peak and the base line

was taken as the fusion heat of the α-phase. Similarly, the area (∆Hβ
exp

) enclosed by the

vertical line, the β-fusion peak and the base line was taken as the fusion heat of the

β-phase. However, this method tended to underestimate the value of the α-fusion heat as

some of the less perfect α-crystals melted before the temperature at which the vertical

line was drawn. The error became rather significant when the samples contained more

α-PP. So far, we are not aware of any method in the literature which enables us to deter-

mine the true values of the fusion heats from the overlapped fusion peaks. As a result, it is
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not possible to determine the exact amount of the α- and β-phase crystals from the DSC

analysis. Although there is an alternative method on the basis of WAXS which gives a

value to indicate the relative amount of the β-phase [6], it does not provide the true

crystallinity or mass percentage of the β-phase in the sample. In an earlier study [7],

isotactic polypropylene (iPP) samples of pure β-phase was produced. This enables us to

prepare blends of known amounts of the α- and β-crystals. In this study, the fusion be-

haviours of such blends were studied by DSC. The relationship between area ∆Hβ
exp

of

the overlapped fusion peaks and the calculated value of the β-fusion heat, ∆Hβ
calc , based

on composition was investigated. A correction function was developed to determine the

β-fusion heat from the overlapped fusion peaks of an iPP sample which contained a mix-

ture of the α- and β-phase crystals.

Experimental

The iPP resin used was Himont 6501 in powder form. The degrees of crystallinity of the

pure α- and pure β-phase samples based on density were 63 and 61.4% respectively and

their preparation methods were reported earlier [7]. Blends containing different mass ra-

tios of the α- and β-phase crystals were prepared from small samples cut from the pure α-

and pure β-phase mouldings. The fusion heats, ∆Hα
calc and ∆Hβ

calc , of the blends were cal-

culated according to the following equation,

∆ ∆H w Hi

calc

i

c

c

1

i= (1)

where ∆H i

calc is the fusion heat due to the crystalline phase concerned, either α or β,

in a unit mass of the blend (containing a mixture of α, β and amorphous phases); wi

c is

the degree of crystallinity of the crystalline phase and ∆1
c iH is the specific fusion heat

of the 100% crystalline material. The values of ∆ c

1
Hαand ∆1

c Hβ were taken as 177

and 168.5 J g–1 respectively [7]. DSC analyses of the blends were carried out at a scan

rate of 10°C min–1 in nitrogen.

Results and discussion

Table 1 shows the compositions of a number of α- and β-PP blends used in this study.

The α- and β-fusion heats, i.e. ∆Hα
calc and ∆Hβ

calc of the blends were calculated ac-

cording to Eq. (1) and were listed in Table 2. Figure 1 shows the DSC curves of the

blends. Two fusion peaks at about 155 and 168°C were observed, corresponding to

the melting of the β- and α-phases respectively. They were partially overlapped, es-

pecially for blends with a high α-phase content. In principle, the DSC curves for

blends of α- and β-PP may be constructed as the sum of two curves: one for the melt-

ing of pure α-PP of a certain crystallinity and the other for the melting of pure β-PP of

a certain crystallinity. By varying the α-crystallinity and the β-crystallinity the calcu-

lated curve can be made to resemble the experimental curve. Then the crystallinities

and the α- and β-fusion heats of the blends can be determined. However, the pure

β-PP sample can only be prepared under some stringent thermal conditions and its
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crystallinity cannot be controlled deliberately to match with those of the blends.

Therefore, an indirect approach was adopted to determine the α- and β-fusion heats

of the blends. The values of ∆Hα
exp

and ∆Hβ
exp

were determined from the DSC curves

as described above and were also listed in Table 2. It can be seen that when the blend

contained a high percentage of the β-phase, this method gave a good approximation

of the β-fusion heat. However, when the blend had a high content of the α-phase, it

tended to underestimate the α-fusion heat and overestimate the β-fusion heat. A cor-

rection factor (Cf) is therefore required in order to obtain a better approximation of

the β-fusion heat from the DSC analysis of an unknown α- and β-PP blend.

Table 1 Compositions of the α- and β-PP blends

Sample
No.

mα/ mβ/ mt/ mα,c/ mβ,c/ wc

α/ wc

β/ wc/

mg %

1 1.1 6.9 8.0 0.69 4.24 8.6 53.0 61.6

2 1.4 5.8 7.2 0.88 3.56 12.2 49.4 61.6

3 2.2 5.1 7.3 1.38 3.13 18.9 42.9 61.8

4 3.0 4.5 7.5 1.89 2.76 25.2 36.8 62.0

5 3.6 3.9 7.5 2.27 2.39 30.3 31.9 62.2

6 4.1 3.0 7.1 2.58 1.84 36.3 25.9 62.2

7 5.5 2.4 7.9 3.46 1.47 43.8 18.6 62.4

8 5.4 1.7 7.1 3.40 1.04 47.9 14.6 62.5

9 6.1 0.9 7.0 3.84 0.55 54.8 7.9 62.7

mα, mβ and mt: masses of pure α-PP (including amorphous material), pure β-PP and total mass of the
blends
mαc and mβc: masses of α- and β-phase crystals in the blends
wα

c, wβ
c and wc: crystallinity of α-phase, β-phase and overall crystallinity of the blends

Table 2 Comparison between fusion heats calculated on the basis of composition and areas of
the fusion peaks divided by a vertical line through the maxima between the peaks

Sample
No.

∆H α
calc/ ∆H β

calc/ ∆H α
exp

/ ∆H β
exp

/
C

H

H
f

calc

exp
=

∆
∆

β

βJ g–1

1 15.2 89.3 12.4 89.7 0.996

2 21.6 83.2 16.6 86.0 0.967

3 33.5 72.3 24.0 79.7 0.907

4 44.6 62.0 28.0 75.0 0.827

5 53.6 53.8 35.3 70.6 0.762

6 64.3 43.6 39.0 66.0 0.660

7 77.5 31.3 50.6 55.3 0.566

8 84.8 24.6 50.2 54.0 0.456

9 97.0 13.3 66.9 46.7 0.285
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Ideally, the correction factor should yield the calculated β-fusion heat (∆Hβ
calc )

as follows:

∆ ∆H C Hβ β
calc

f

exp= (2)

For a known blend, the value of Cf may be determined easily since the β-fusion heat,

∆Hβ
calc , can be calculated based on composition which can then be compared with ∆Hβ

exp

from the DSC curves. To obtain the values of Cf for the whole range of composition from

pure α-phase to pure β-phase, however, a lot of experimental work would be required to

prepare the blends. In this study, another correction factor (C f

*) was assumed as follows:

C
h

h
f

*

n

= −







1 2

1

(3)

where h1 and h2 are the heights from the base line to the β-fusion peak and to the max-

ima between the α- and β-fusion peaks respectively (Fig. 1) while ‘n’ is a positive

constant to be determined by experiment. The ratio h2/h1 depends on the relative

amount of β-PP in the sample. From the experimental observations, when the content

of β-PP was low, the β-fusion peak would become small and tend to merge with the

maxima between the fusion peaks. In this case, the value of h2/h1 is near 1 and the cor-

rection factor C f

* tends to zero. On the other hand, when the sample contained a high

percentage of β-PP, the β-fusion peak became very distinctive and the maxima

tended to move towards the base line, hence, giving a small h2/h1 ratio and C f

* near 1.

The values of h1 and h2 for each blend were measured from their curves. Then,

Cf

∗ was calculated according to Eq. (3) for different n values. Table 3 shows the re-

sults of C f

* for a number of n values from 0.4 to 1.0. The results were compared with

the values of Cf calculated according to Eq. (2). It can be seen that the lowest root
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Fig. 1 DSC curves of the α and β blends, compositions are shown in Table 1



mean square difference between Cf and C f

* occurred at about n=0.6. Therefore, the

correction function can be written as

C
h

h
f

* = −







1 2

1

0 6.

(4)

Table 3 Correction factor C f

* at different n values

Sample No.
h1/ h2/ Correction factor C f

* at n=

mm 0.4 0.5 0.6 0.7 1.0

1 122 7.5 0.975 0.969 0.963 0.957 0.939

2 114 15 0.945 0.932 0.919 0.906 0.868

3 102 20 0.916 0.897 0.877 0.858 0.804

4 133 36 0.881 0.854 0.827 0.802 0.729

5 121 44 0.835 0.798 0.762 0.729 0.636

6 130 57 0.794 0.749 0.707 0.668 0.562

7 102 66 0.659 0.594 0.535 0.482 0.353

8 97 69 0.608 0.537 0.474 0.419 0.289

9 60 55 0.370 0.289 0.225 0.176 0.083

[ ( ) ] .

.

C C

N

f f

*−∑ 2 0 5

0 5
0.022 0.006 0.004 0.010 0.058

Figure 2 shows a plot of the non-corrected approximation (∆Hβ
exp

) and corrected ap-

proximation (C Hf

* exp∆ β ) of the β-fusion heat vs. the calculated β-fusion heat (∆Hβ
calc )

based on composition. In blends with a high β-PP content, the values of ∆Hβ
exp

were rea-

sonably close to those of ∆Hβ
calc . However, as the content of β-PP decreased, i.e. more

α-PP, ∆Hβ
exp

became increasingly larger than ∆Hβ
calc . This phenomenon can be explained
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Fig. 2 Plots of β-fusion heat from DSC analysis vs. the calculated β-fusion heat based
on composition:¨ – before correction (∆H β

exp
); v – after correction (C Hf

* exp∆ β )
with n=0.6 and ∆ – DSC results and the calculated fusion heat are equal



as follows. When more α-PP was present in the blends, a substantial amount of the less

perfect α-crystals would melt at temperatures below that of the dividing line drawn be-

tween the two peaks. In other words, their fusion heat would fall within the ∆Hβ
exp

region

of the DSC curve. Consequently, this would overestimate the amount of β-PP but under-

estimate that of α-PP in the sample.

In comparison, the corrected results (C Hf

* exp∆ β ) gave a good approximation of

the true β-fusion heat over the whole range of compositions studied. This suggests

that the correction function can be used to determine the β-fusion heat of a mixture of

α- and β-PP within the composition range. Nevertheless, it should be pointed out that

the value of ‘n’ in the correction function may vary if the thermal analysis is carried at

a different heating rate. β-PP is known to be thermally unstable and it will transform

to α-PP by means of a melting and re-crystallization mechanism during heating

[1, 2, 8–10]. During the DSC test, when the sample is heated to a temperature high

enough to melt the β-crystals but below the melting temperature of the α-phase, the

molten material will re-crystallize into the α-phase. Since re-crystallization is an exo-

thermic process which will affect the shape of the fusion curves. A slow heating rate

is more favorable for the re-crystallization to occur. When the DSC analysis was per-

formed at 2.5°C min–1, a distinctive exothermic peak was observed between the α-

and β-fusion peaks, namely, the maxima between the α- and β-fusion peaks lay

above the base line of the curve [11]. In this study, the DSC analysis was performed

at 10°C min–1 in which the amount of recrystallization was insignificant and its effect

on the fusion curves was minimal.
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